ব'ছ-আইনষ্টাইন পৰিসংখ্যা

অসমীয়া ৱিকিপিডিয়াৰ পৰা
সত্যেন্দ্ৰ নাথ বসু ব’ছ-আইনষ্টাইন পৰিসংখ্যাৰ সহ: উদ্ভাৱক
এলবাৰ্ট আইনষ্টাইন ব’ছ-আইনষ্টাইন পৰিসংখ্যাৰ সহ: উদ্ভাৱক (১৯২১ চন)

পৰিসাংখ্যিক পদাৰ্থ বিজ্ঞান বা পৰিসাংখ্যিক বল বিজ্ঞানব’ছ-আইনষ্টাইন পৰিসংখ্যা বা "B–E পৰিসংখ্যা"ই তাপীয় সাম্য অৱস্থাত একে আৰু পৰষ্পৰৰ পৰা পৃথক বুলি দেখুৱাব নোৱৰা ব'ছন কণাৰ বিভিন্ন শক্তি স্তৰত পৰিসাংখ্যিক বিতৰণ নিৰ্ণয় কৰে।

মূল কথা[সম্পাদনা কৰক]

ফাৰ্মি-ডিৰাক পৰিসংখ্যা বা ব’ছ-আইনষ্টাইন পৰিসংখ্যা কেৱল তেতিয়াহে ব্যৱহাৰ হয় যেতিয়া কোৱান্টাম প্ৰভাবৰ পৰিমাণ বেছি হয় আৰু অধ্যয়ণ কৰিব লগা কণা সমূহ একে আৰু পৰষ্পৰৰ পৰা পৃথক বুলি দেখুৱাব নোৱৰা হয়। যদি কণা সমূহে ”N/V ≥ nq সুত্ৰ মানি চলে তেতিয়া আমি কোৱান্টাম প্ৰভাব দেখা পাওঁ। ইয়াত ”nq হৈছে কোৱান্টাম ঘনত্ব (quantum concentration) যাৰ বাবে দূটা কণাৰ মাজৰ দূৰত্ব তাপীয় ডি ব্ৰগলি তৰংগদৈৰ্ঘৰ সমান, যাতে কণাসমূহৰ তৰংগ ফলনসমূহে ইটোৱে সিটোক স্পৰ্শ কৰে কিন্তু ওপৰা ওপৰি নহয়। ফাৰ্মি-ডিৰাক পৰিসংখ্যা পাউলিৰ নিষেধ নীতি মানি চলা ফাৰ্মিয়ন আৰু ব’ছ-আইনষ্টাইন পৰিসংখ্যা ব'ছন ত প্ৰয়োগ হয়। যিহেতু কোৱান্টাম ঘনত্ব তাপৰ ওপৰত নিৰ্ভৰশীল উচ্চ উষ্ণতাত সৰহ সখ্যক প্ৰণালীয়েই শ্বেত বামণৰ দৰে অতি ঘণত্ব বিশিষ্ট নোহোৱালৈকে ধ্ৰুপদী (মেক্সৱেল-ব’ল্টজমেন) সীমা মানি চলে। ফাৰ্মি-ডিৰাক পৰিসংখ্যা আৰু ব’ছ-আইনষ্টাইন পৰিসংখ্যা দুয়োবিধেই উচ্চ উষ্ণতা আৰু নিম্ন চাপত মেক্সৱেল-ব’ল্টজমেন পৰিসংখ্যালৈ পৰিৱৰ্তিত হয়।

ব'ছন সমূহে ফাৰ্মিয়নৰ দৰে পাউলিৰ নিষেধ নীতি মানি নচলে: অৰ্থাত একেটা অৱস্থাতে একে সময়তে যিকোনো সংখ্যক কণা থাকিব পাৰে। সেইয়েহে অতি কম তাপমাত্ৰাত ব’ছনে ফাৰ্মিয়নতকৈ বেলেগ ব্যৱহাৰ কৰে; এই অৱস্থাত আমি সকলোবোৰ ব'ছন কণাক একেটা কম শক্তিৰ অৱস্থাত কেন্দ্ৰীভূত হোৱা দেখা পাওঁ, এই পৰিঘটনাক ব’ছ-আইনষ্টাইন ঘণীভৱণ বোলা হয়। সত্যেন্দ্ৰ নাথ বোসে ১৯২৪ চনত ফ’টন কণাৰ বাবে ব’ছ-আইনষ্টাইন পৰিসংখ্যা প্ৰথমে আগবঢ়ায়। পাছত এলবাৰ্ট আইনষ্টাইনে ১৯২৪-২৫ চনত পৰমাণু সমূহৰ বাবে ইয়াৰ সাধাৰণীকৃত ৰূপ আগবঢ়াই।

ব’ছ-আইনষ্টাইন পৰিসংখ্যা মতে কোনো শক্তি স্তৰ ”i  ত থাকিব লগা কণাৰ সংখ্যা

n_i = \frac{g_i}{e^{(\varepsilon_i-\mu)/kT}-1}

য’ত εi > μ আৰু ni  হৈছে ”i স্তৰত থকা কণাৰ সংখ্যা, gi  হৈছে ”i শক্তি স্তৰৰ ডিজেনেৰেছি, εi  হৈছে ”i তম স্তৰৰ শক্তি, ”μ হৈছে ৰাসায়নিক বিভৱ, ”k হৈছে ব’ল্টজমেনৰ ধ্ৰুবক আৰু ”T হৈছে পৰম উষ্ণতা

যদি  kT \gg \varepsilon_i-\mu , ওপৰৰ সুত্ৰৰ পৰা আমি ৰেলি-জিনৰ সুত্ৰ 
n_i = \frac{g_i kT}{\varepsilon_i-\mu} পাব পাৰো।

ইতিহাস[সম্পাদনা কৰক]

ঢাকা বিশ্ববিদ্যালয়তেজষ্ক্ৰিয়তা আৰু অতি বেঙুণীয়া তৰংগ দৈৰ্ঘত ৰে'লি-জিন সুত্ৰৰ অ-প্ৰযোজ্যতা (অতি বেঙুনীয়া প্ৰলয় বা আলট্ৰা ভায়লেট কেটাছট্ৰপি) বৰ্ণনা কৰোতে সত্যেন্দ্ৰ নাথ বসুৱে তেওঁৰ ছাত্ৰ সকলক বুজাব খুজিছিল যে তেতিয়াৰ প্ৰচলিত সুত্ৰ সমূহ এই পৰিঘটনা ব্যাখ্যা কৰিবলৈ অক্ষম, কিয়নো এইবোৰে দেখুওৱা ফল সমূহ পৰীক্ষাত পোৱা ফল সমূহতকৈ ভিন্ন। অৱশ্যে বক্তব্যত বসুৱে আগবঢ়োৱা তেওঁৰ সুত্ৰই যদিও পৰীক্ষাত পোৱা তথ্যৰ সতে একে তথ্য দিছিল কিন্তু তেওঁ এই সুত্ৰত ভুল ধৰা পৰিছিল (পাছত তেওঁ প্ৰৱন্ধ "প্লাংকচ ল’ এণ্ড হাইপ’থেচিছ অৱ লাইট কোৱান্টা"ত তাৰ শুধৰণি প্ৰকাশ কৰিছিল।

প্ৰথম অৱস্থাত তেওঁ কৰা ভুলটো আছিল, তেওঁ ধৰি লৈছিল যে দুটা মুদ্ৰা ওপৰলৈ দলিয়ালে দুটা "হে'ড" পোৱাৰ সম্ভাৱনা তিনি ভাগৰ এভাগ, সম্ভাৱিতা তত্বৰ সাধাৰণ জ্ঞান থকা সকলোৱে জানে যে এইটো আছিল ভুল। পিছে পৰীক্ষালব্ধ তথ্যৰ সৈতে একে তথ্য পোৱা বাবে বসুৱে প্ৰথম অৱস্থাত এইটো ভুল বুলি ভবা নাছিল। বসুৱেই প্ৰথম এই কথা কৈছিল যে হাইজেনবাৰ্গৰ অনিশ্চয়তা নীতি মানি চলা অণুবীক্ষণিক(অতি সুক্ষ্ম) কণা সমূহৰ বাবে মে'ক্সৱেল-ব’ল্টজমেন বিতৰণ সঠিক বিতৰণ প্ৰণালী নহয়। সেয়ে তেওঁ ফে'জ স্পে'চ(এনে এক অৱস্থান, য’ত কোনো এটা প্ৰণালীৰ সকলোবিলাক অৱস্থা বৰ্ণনা কৰিব পৰা যায়)ত কণাসমূহ পোৱাৰ সম্ভাৱিতাতাৰ ওপৰত গুৰুত্ব দিয়ে, য’ত প্ৰতিখন এনে স্পে'চৰ আয়তন হয় h³, আৰু কণাৰ নিৰ্দিষ্ট স্থান আৰু নিৰ্দিষ্ট ভৰবেগৰ ধাৰণা বাদ দিয়ে।

সেইসময়ৰ পদাৰ্থ বিজ্ঞানৰ বিখ্যাত আলোচনী সমূহে প্ৰথমে বসুৰ প্ৰৱন্ধটো প্ৰকাশ কৰিব বিচৰা নাছিল। বহুতো প্ৰকাশকে তেওঁৰ কৰ্মৰাজিক হাস্যকৰ বুলি কৈছিল। অৱশেষত তেওঁ প্ৰৱন্ধটো আইনষ্টাইনলৈ প্ৰেৰণ কৰে; আৰু আইনষ্টাইনে ততালিকে তেওঁৰ ধাৰণা শুদ্ধ বুলি মানি ল’লে আৰু অৱশেষত বসুৱে পাবলগীয়া সন্মান অৰ্জন কৰে; Zeitschrift für Physik আলোচনীত আইনষ্টাইনৰ প্ৰৱন্ধৰ সৈতে একেলগে বসুৰ প্ৰৱন্ধ প্ৰকাশ পায়। ইয়াৰ আগতে বসুৱে আইনষ্টাইনৰ সাধাৰণ আপেক্ষিকতাবাদৰ সুত্ৰক জাৰ্মান ভাষাৰ পৰা ইংৰাজীলৈ অনুবাদ কৰিছিল।

প্ৰথম অৱস্থাত "বসুৰ ভুল" ধাৰণাই শুদ্ধ তথ্য দিয়াৰ কাৰণ হৈছে ফ’টন সমূহ পৰষ্পৰৰ পৰা পৃথক বুলি দেখুৱাব নোৱৰা কণা, সমান শক্তি বিশিষ্ট দুটা ফ’টনৰ নিৰ্দিষ্ট এটাক কোনোৱেই চিনাক্ত কৰি উলিয়াব নোৱাৰে। একেদৰে মুদ্ৰাৰ এটাই যদি ফ’টন আৰু আনটোৱে ব'ছনৰ দৰে ব্যৱহাৰ কৰৈবলৈ লয়, তেনেহ’লে ই দুটা হে'ড পোৱাৰ সম্ভাৱনা এক তৃতীয়াংশ কৰি তুলিব (টেইল-হেড=হেড-টেইল)। এই "বসুৰ ভুলে"ই বৰ্তমানৰ বিখ্যাত ব'ছ-আইনষ্টাইন পৰিসংখ্যা।

এই ধাৰণাকে আইনষ্টাইনে কণাৰ পৰা পৰমাণুলৈ প্ৰসাৰিত কৰে যি পাছলৈ ব’ছ-আইনষ্টাইন ঘণীভৱণৰ ব্যাখ্যা আগবঢ়াই। ব’ছ-আইনষ্টাইন ঘণীভৱণ হৈছে একে অৱস্থাতে ঘণীভূত হৈ থকা ব'ছন কণা (যিবিলাকৰ ঘূৰ্ণন অখণ্ড সংখ্যাৰ গুণিতক), ১৯৯৫ চনত পৰীক্ষাৰে ইয়াক দেখুওৱা হয়।

গাণিতিক বিশ্লেষণ[সম্পাদনা কৰক]

কেবাটাও শক্তি স্তৰক ধৰা হওক, আৰু এই বিভিন্ন স্তৰ সমূহক \displaystyle iৰে সূচিত কৰা হ’ল, ধৰা হ’ল প্ৰতিটো শক্তি স্তৰৰ শক্তি \displaystyle \varepsilon_i, প্ৰত্যেক স্তৰত থকা মুঠ কণাৰ সংখ্যা \displaystyle n_i, আৰু প্ৰত্যেকটো স্তৰত থকা মুঠ উপ-স্তৰৰ সংখ্যা \displaystyle g_i লগতে ধৰা হওক এই সকলোবোৰ উপস্তৰৰ শক্তি সমান। কোনো মূখ্য স্তৰ \displaystyle iৰ বাবে \displaystyle g_iৰ মানক স্তৰটোৰ “ডিজেনেৰেচী” (degeneracy) বোলা হয়। এই উপ স্তৰ সমূহত যিকোনো সংখ্যক ব’ছন একেলগে থাকিব পাৰে।

ধৰা হওক \displaystyle nটা কণাক মুঠ \displaystyle gটা উপস্তৰত মুঠ\displaystyle w(n,g) ধৰণেৰে বিতৰণ কৰিব পাৰি। যিহেতু ব”ছন সমূহক পৰষ্পৰৰ পৰা পৃথক বুলি দেখুৱাব নোৱৰি গতিকে এটা উপস্তৰত \displaystyle nটা কণাক মাত্ৰ এক প্ৰকাৰেহে বিতৰণ কৰিব পাৰি , \displaystyle w(n,1)=1, গতিকে \displaystyle nটা কণাক দূটা উপস্তৰত মুঠ \displaystyle (n+1) প্ৰকাৰে বিতৰণ কৰিব পৰা যাব। ইয়াক আমি তলত দিয়া ধৰণেৰে লিখিব পাৰো,


w(n,2)=\frac{(n+1)!}{n!1!}.

গতিকে সাধাৰণ চিন্তাৰ পৰা আমি ক’ব পাৰো, (তলৰ টোকা চাওক) :\displaystyle n কণাক তিনিটা উপস্তৰত

w(n,3) = w(n,2) + w(n-1,2) + \cdots + w(1,2) + w(0,2)
ধৰণেৰে বিলাব পাৰো।

যাতে,


w(n,3)=\sum_{k=0}^n w(n-k,2) = \sum_{k=0}^n\frac{(n-k+1)!}{(n-k)!1!}=\frac{(n+2)!}{n!2!}

য’ত:


\sum_{k=0}^n\frac{(k+a)!}{k!a!}=\frac{(n+a+1)!}{n!(a+1)!}.

এনেকৈ আগবাঢ়ি গ’লে আমি দেখিম যে, \displaystyle w(n,g) এটা দ্বিঘাট চলক হে মাত্ৰ (তলৰ টোকা চাওক)


w(n,g)=\frac{(n+g-1)!}{n!(g-1)!}.

ঊদাহৰণস্বৰূপে তিনিটা স্তৰত দূটা কণাক বিতৰণ কৰিলে স্তৰ তিনিটাত কণাৰ সংখ্যা তলত দিয়া দৰে হ’ব পাৰে, ২০০, ১১০, ১০১, ০২০, ০১১, বা ০০২ গতিকে মুঠ ৬ অৰ্থাৎ 4!/(2!2!) প্ৰকাৰৰ বিতৰণ আমি পাব পাৰো । সকলোবোৰ মূখ্য স্তৰত থকা, সকলোবোৰ উপস্তৰৰ বাবে,


W = \prod_i w(n_i,g_i) =  \prod_i \frac{(n_i+g_i-1)!}{n_i!(g_i-1)!}
\approx\prod_i \frac{(n_i+g_i)!}{n_i!(g_i-1)!}

য’ত n_i \gg 1 বুলি ধৰা হৈছে।

তথ্যসূত্ৰ[সম্পাদনা কৰক]

  • Annett, James F. (2004). Superconductivity, Superfluids and Condensates. প্ৰকাশক New York: Oxford University Press. ISBN 0-19-850755-0. 
  • Bose (1924). "Plancks Gesetz und Lichtquantenhypothese", Zeitschrift für Physik 26:178–181. doi:10.1007/BF01327326 (Einstein's translation into German of Bose's paper on Planck's law).
  • Carter, Ashley H. (2001). Classical and Statistical Thermodynamics. প্ৰকাশক Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-779208-5. 
  • Griffiths, David J. (2005). Introduction to Quantum Mechanics (2nd সম্পাদনা). প্ৰকাশক Upper Saddle River, NJ: Pearson, Prentice Hall. ISBN 0-13-191175-9.