ৰেখা

অসমীয়া ৱিকিপিডিয়াৰ পৰা
Jump to navigation Jump to search
এদাল সৰল ৰেখা

সংজ্ঞা: বিন্দুৰ গতিপথকে (locus) ৰেখা বোলে। বিন্দুৱে দিশ নসলোৱাকৈ পোনে পোনে গতি কৰিলে সৰল ৰেখা আৰু বক্ৰপথত গতি কৰিলে বক্ৰৰেখাৰ সৃষ্টি হয়। একোডাল ৰেখা অসংখ্য বিন্দুৰ সমষ্টি। ৰেখাৰ সহায়ত বিভিন্ন ধৰণৰ জ্যামিতিক আকাৰৰ পৰিসীমা তৈয়াৰ কৰা যায়। উদাহৰণস্বৰূপে সৰলৰেখাৰ সহায়ত ত্ৰিভূজ, চতুৰ্ভূজ, আয়তক্ষেত্ৰ, ৰম্বাছ, সামান্তৰিক, পঞ্চভূজ ইত্যাদি তৈয়াৰ কৰা হয়। আনহাতে বক্ৰৰেখাৰ সহায়ত বৃত্ত, উপবৃত্ত, অধিবৃত্ত ইত্যাদি তৈয়াৰ কৰা হয়। ইঞ্জিনিয়াৰিং বা পদাৰ্থবিজ্ঞান প্ৰভৃতি বিষয়ত গণনাকাৰ্য্যত ৰেখাৰ গুৰুত্ব অপৰিসীম।

চিত্ৰকলাটো ৰেখাৰ ব্যৱহাৰ উল্লেখযোগ্য। বিভিন্ন ধৰণৰ ৰেখাৰ ৰূপকৰ সহায়ত শিল্পীসকলে তেওঁলোকৰ বিভিন্ন ৰেখাচিত্ৰ অংকণ কৰে।

ৰেখাখণ্ড[সম্পাদনা কৰক]

এডাল বন্ধ ৰেখাখণ্ডৰ জ্যামিত্যিক সংজ্ঞা: A বা তাৰ সোঁফালৰ বিন্দুবোৰৰ সৈতে B বা তাৰ বাঁওফালৰ বিন্দুবোৰেৰে গঠিত অংশ
ঐতিহাসিক চিত্ৰ – এডাৰ ৰেখা খণ্ড আঁকা (১৬৯৯)

ৰেখাখণ্ড হৈছে এডাল ৰেখাৰ এটা খণ্ড বা অংশ। ৰেখা এডালত থকা যিকোনো দুটা বিন্দুৰ মাজৰ দূৰত্বকেই ৰেখা খণ্ড বুলিব পাৰি। অৰ্থাৎ ৰেখাখণ্ড এডাল দুটা প্ৰান্ত বিন্দুত সীমিত হৈ থাকে। সেয়ে ৰেখা খণ্ড এডালৰ দৈঘ্যৰ মাপ নিৰ্ণয় সম্ভৱ। উদাহৰণ স্বৰূপে ত্ৰিভূজ, বৰ্গ, আয়ত আদিৰ বাহুবোৰ একো একোডাল ৰেখাখণ্ড। আকৌ এটা বৃত্তৰ ক্ষেত্ৰত বৃত্তৰ ব্যাস, ব্যাসাৰ্ধ, জ্যা আদিবোৰ হৈছে একো একোডাল ৰেখাখণ্ড।

ৰশ্মি[সম্পাদনা কৰক]

ৰশ্মি হৈছে এডাল ৰেখাৰ এটা অংশ। ৰশ্মিৰ এটা প্ৰান্ত বিন্দু থাকে আৰু ইয়াৰ আনটো মূৰ অসীমলৈ বিস্তৃত। ৰেখাৰ দৰে ৰশ্মিৰ মান নিৰ্ণয় সম্ভৱ নহয়। এডাল ৰেখাৰ যিকোনো এটা বিন্দুৰ পৰা আৰম্ভ হৈ দুয়ো মূৰে দুডাল বিপৰীতমুখী ৰশ্মিয়ে গতি কৰে।

ৰশ্মি
তিনিডাল ৰেখা — ৰঙা আৰু নীলা ৰেখাকেইডালৰ ঢাল একে, আনহাতে ৰঙা আৰু সেউজীয়া দুডালে y−অক্ষক একে বিন্দুত কটাকটি কৰিছে।


তথ্যসূত্ৰ[সম্পাদনা কৰক]

  • Faber, Richard L. (1983). Foundations of Euclidean and Non-Euclidean Geometry. প্ৰকাশক New York, United States: Marcel Dekker. ISBN 0-8247-1748-1. 

বাহ্যিক সংযোগ[সম্পাদনা কৰক]